

OCR (A) Biology GCSE PAG 08 - Osmosis

Flashcards

This work by PMT Education is licensed under CC BY-NC-ND 4.0

What is osmosis?

What is osmosis?

The movement of water molecules from a higher water potential to a lower water potential through a partially permeable membrane

Describe how you would carry out an investigation into osmosis using potato tissue

Describe how you would carry out an investigation into osmosis using potato tissue

- Cut identical potato cylinders using a cork borer
- Measure and record the length and mass of cylinders using ruler and balance
- Add each cylinder to one of three solutions: 1M sugar solution, 0.5M sugar solution and distilled water
- Leave cylinders in tubes overnight
- Remove cylinders from tubes and blot them using paper towels
- Record length and mass of each cylinder
- Draw graph of change in mass in grams (y axis) against concentration of solution in mol dm⁻³ (x axis)

Why is it necessary to use a cork borer to cut the cylinders?

Why is it necessary to use a cork borer to cut the cylinders?

Results in equal sized samples so changes in length and mass can be compared easily

Why is it necessary to blot the cylinders with paper after removing them?

Why is it necessary to blot the cylinders with paper after removing them?

Each cylinder may have a different amount of water on its surface, so masses may vary. Blotting cylinders allows masses to be comparable

What safety precautions should be taken with this experiment?

What safety precautions should be taken with this experiment?

Handle cork borer and scalpel with care

How can the water potential of the plant cells be found?

How can the water potential of the plant cells be found?

Plot a graph of change in mass against concentration.

Find the x-intercept, which is the concentration of solution that is isotonic to the plant cells.

State a source of error in this practical.

State a source of error in this practical.

Plant tissue taken from different parts of the plant may have different water potentials.

